
REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

TERCER SEMESTRE. MODULO14 CUIDADO CRITICO E INTENSIVO

1. INTUBACIÓN OROTRAQUEAL

La intubación orotraqueal es una técnica agresiva que se realiza con mucha frecuencia en los servicios de urgencias y en las urgencias extrahospitalarias. Por ello todo facultativo que se dedique a estos menesteres debe conocer los beneficios que aporta y los problemas que de ella se derivan, así como las dificultades que se pueden manifestar durante el procedimiento y los fármacos que se deben utilizar.

Los motivos por los que suele ser necesaria la intubación orotraqueal son todos aquellos que provocan alteración de la normalidad de la función respiratoria, y que comprenden: vía aérea permeable; impulso respiratorio adecuado; funcionalismo neuromuscular correcto; anatomía torácica normal; parénquima pulmonar sin alteraciones; capacidad de defensa frente a la aspiración, y mantenimiento de la permeabilidad alveolar por medio de los suspiros y la tos.

A grandes rasgos, se pueden resumir los motivos de intubación orotraqueal en los servicios de urgencias en los siguientes casos:

- a) Parada cardiorrespiratoria
- b) Protección de la vía aérea

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

c) En el traumatismo craneoencefálico en aquellos casos en que el nivel de conciencia sea bajo y ponga en riesgo la vida del paciente, debe ser intubado todo aquel cuya puntuación en la escala de coma de Glasgow (tabla 1) sea menor de 8 puntos

- d) Cualquier paciente que tenga una insuficiencia respiratoria aguda o reagudizada con una frecuencia respiratoria menor de 10 o mayor de 30 respiraciones/min y que comprometa su estabilidad
- E) Disminución del nivel de conciencia con una puntuación de la escala de Glasglow menor de 8 puntos, excepción hecha de aquellos casos en que la causa sea fácilmente reversible, sobredosis por opiáceos, hipoglucemia o intoxicaciones.

La intubación orotraqueal proporciona una relativa protección frente a la aspiración pulmonar, mantiene un conducto de baja resistencia adecuado para el intercambio gaseoso respiratorio y sirve para acoplar los pulmones a los dispositivos de asistencia respiratoria y de terapias de aerosoles; además, es útil para la creación de una vía para la eliminación de las secreciones.

Ante un paciente en situación crítica que llega a un servicio de urgencias es necesario realizar de forma reglada una valoración sobre la necesidad de intubación endotraqueal; esta necesidad puede ser inmediata en caso de paro cardíaco, muy urgente en el caso de insuficiencia respiratoria que puede provocar parada respiratoria, o urgente en caso de disminución del nivel de conciencia con control inadecuado de la vía aérea.

EVALUACIÓN DEL GRADO DE URGENCIA DE LA INTUBACIÓN

Si la reanimación cardiopulmonar ya está en curso, se requerirá la ventilación con mascarilla y oxígeno al 100%, seguida de intubación orotraqueal. En caso de que no sea así, se llevará a cabo una valoración rápida para determinar el grado de urgencia con que debe efectuarse la intubación. Esta valoración comprende los siguientes pasos:

NIVEL DE CONCIENCIA.

La obnubilación, el estupor o el coma pueden tener un origen respiratorio (hipoxemia o hipercapnia) o una causa metabólica o neurológica. La disminución del grado de conciencia, sea cual sea la causa, puede ser el desencadenante de obstrucción de la vía aérea, aspiración pulmonar, atelectasias o neumonías.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

PIEL.

La cianosis es el signo externo de la desaturación de la hemoglobina, y aparece cuando existen al menos 5 g/dl de hemoglobina desaturada. La presencia de piel fría acompañada de sudación sugiere un estrés autonómico intenso o un fallo circulatorio.

Respiración.

Es muy importante observar el grado de esfuerzo respiratorio, y se debe presentar especial atención el ritmo y la profundidad de los movimientos del tórax.

Ante un paciente cuyas respiraciones son lentas y profundas (< 10 min) se considera que existe una intoxicación medicamentosa o un proceso que afecte al sistema nervioso central. La taquipnea es más inespecífica y puede tener cualquier etiología.

Se valorará el flujo de aire respiratorio colocando una mano delante de la boca y la nariz del paciente.

Se observará el movimiento de la caja torácica con la espiración y la inspiración. Las diferencias entre un lado y otro nos pueden hacer pensar en neumotórax.

A la hora de proceder a esta técnica todo el material necesario debe estar preparado y en disposición de funcionar; nada justifica la improvisación. Entre este material se incluyen:

a) laringoscopio con pala de diversos tamaños y con fuente de luz en perfecto funcionamiento

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

b) tubos endotraqueales de distintos tamaños, adecuando el tamaño a la edad del paciente como se refleja en la tabla

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

c) jeringa en caso de que, como ocurre en las personas mayores de 8 años, el tubo orotraqueal tenga balón inflable

d) pinza de Magill

e) ambú con mascarilla de distintos tamaños

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

f) conexiones para el tubo

g) sonda de aspiración conectada al vacío para visualizar las cuerdas vocales y aspirar en caso de vómitos

h) vía venosa para la administración de medicación.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

2. VENTILACIÓN MECÁNICA

La ventilación mecánica (VM) se conoce como todo procedimiento de respiración artificial que emplea un aparato para suplir o colaborar con la función respiratoria de una persona, que no puede o no se desea que lo haga por sí misma, de forma que mejore la oxigenación e influya así mismo en la mecánica pulmonar. El ventilador es un generador de presión positiva en la vía aérea que suple la fase activa del ciclo respiratorio (se fuerza la entrada de aire en la vía aérea central y en los alvéolos).

El principal beneficio consiste en el intercambio gaseoso y la disminución del trabajo respiratorio.

TIPOS DE VENTILACIÓN

Ventilación mecánica invasiva

También conocida como ventilación mecánica tradicional, se realiza a través de un tubo endotraqueal o un tubo de traqueostomía (procedimiento médico en el cual se coloca una cánula o sonda en la tráquea para abrir la vía respiratoria con el fin de suministrar oxígeno a la persona). Es el tratamiento habitual de la insuficiencia respiratoria.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Ventilación mecánica no invasiva

Es la que se realiza por medios artificiales (máscara facial), pero sin intubación endotraqueal. Ha demostrado ser una alternativa eficaz a la invasiva, ya que disminuye la incidencia de complicaciones y reduce costes. Actualmente, se indica en pacientes con edema agudo de pulmón cardiogénico e insuficiencia respiratoria hipercapnia secundaria a enfermedad pulmonar obstructiva crónica (EPOC) y en inmunocomprometidos que no requieran una intubación de urgencia y no tengan contraindicaciones para la VMNI (alteración nivel de conciencia, secreciones abundantes, vómitos).

3. MANEJO PACIENTE VENTILADO

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

- Previo a la ventilación.
- Preparar el material, equipos e insumos necesarios para la intubación endotraqueal (laringoscopio, tubos endotraqueales, guías de intubación, guantes estériles, mascarilla, resucitador, cinta de fijación, coche de paro.
- Programar el monitor con los nombres, apellidos, peso y edad del niño, programación de alarmas para la edad del paciente.
- Comprobar conjuntamente con el personal de terapia respiratoria el correcto armado, programación y ciclado del ventilador mecánico tomando en cuenta la edad, peso y diagnóstico del paciente.
- Controlar una correcta monitorización de signos vitales.
- Estar preparados con una segunda dosis de sedo-analgesia y relajación por si la intubación resulta fallida al primer intento, seguir prescripción médica.
- Preparar infusiones de sedoanalgesia de acuerdo a indicaciones médicas.
- Programar bombas de infusión para la administración de infusión continua de medicación.
- Asistir al personal médico y de terapia respiratoria durante la hiperoxigenación del paciente.
- Colaborar con el terapista respiratorio en la aspiración de secreciones durante la intubación endotraqueal, aplicando técnica aséptica.
- Evaluar previamente la integridad del neumotaponador (bag) del tubo endotraqueal.
- Proteger de preferencia la piel antes de la fijación del tubo endotraqueal con una solución polimérica protectora cuya función es formar una película de barrera uniforme para resguardar la integridad de la misma.
- Fijar el tubo endotraqueal en la línea media del labio superior, nunca en la comisura, y en los centímetros indicados de acuerdo a la fórmula descrita en esta ruta.
- Conectar al paciente al ventilador mecánico.
- Valorar condiciones hemodinámicas, neurológicas y respiratorias del paciente y comunicar sobre cualquier cambio en la condición del paciente.
- Dejar al paciente en posición cómoda y la unidad en orden

Durante la ventilación mecánica

- Controlar, registrar y monitorizar las constantes vitales: presión arterial, frecuencia respiratoria, saturación de oxígeno, electrocardiograma, cada hora y registrar en la bitácora.
- Monitorizar y registrar los parámetros ventilatorios cada hora: presiones, volúmenes, fracción inspiración de oxígeno, saturación de oxígeno, presión positiva espiratoria (PEEP), frecuencia, modo de ventilación, reportar novedades.
- Comprobar la adaptación del paciente al ventilador observando cambios en la frecuencia y profundidad de la respiración.
- Mantener la posición del paciente en semifowler 30 a 45º si no está contraindicado, mientras se encuentre en ventilación mecánica y durante la aspiración, aseo parcial o baño del paciente.
- Controlar cada hora nivel de conciencia utilizando la escala de Glasgow y registrar en bitácora.
- Valorar pupilas tamaño y reactividad cada hora y registrar.
- Anotar los cambios en los parámetros del ventilador para valorar su condición actual y el avance en su evolución.
- Mantener el tubo endotraqueal en semi curvatura (no recto) para evitar el flujo de condensación hacia el árbol bronquial.
- Registrar en la bitácora de enfermería la fecha de colocación, el número del tubo endotraqueal y los centímetros introducidos al paciente.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

- Mantener la zona del tubo endotraqueal siempre limpia y seca para evitar lesiones de la piel y extubaciones accidentales, revisar periódicamente al menos 2 veces durante el turno.
- Cambiar sistema de conexiones, tubuladuras (corrugados) o filtros del ventilador mecánico cada vez que se observen restos biológicos o exista contaminación de estos.
- Controlar los sistemas de ventilación para evitar desconexiones de las tubuladuras del sistema de ventilación
- Mantener un sistema de vigilancia activa del paciente con protocolo de sedoanalgesia con la aplicación de la "Escala de Confort."
- Colocar sonda nasogástrica u orogástrica y sonda vesical a todo paciente con ventilación mecánica y realizar el cambio según protocolo del hospital.
- Cambiar cada hora el sitio de ubicación del sensor de saturación y manguito del tensiómetro si la toma de presión arterial no es invasiva.
- Realizar limpieza ocular con suero fisiológico y gasa humedecida.
- Lubricar los ojos con lágrimas artificiales de acuerdo a prescripción médica para prevenir conjuntivitis, úlceras oculares o una incómoda sequedad ocular, debido a las fugas del flujo aéreo.
- Realizar limpieza de fosas nasales con aplicador humedecido para facilitar la eliminación de secreciones secas y aparición de escoriaciones.
- Verificar cada turno la posición de la sonda enteral, así como la permanencia de los centímetros introducidos para evitar aspiración gástrica.
- Valorar signos de distensión abdominal y comunicar al médico en caso de que dicha distensión dificulte el trabajo respiratorio.
- Realizar aseo de cavidad bucal cada 6 horas y por razones necesarias, con clorhexidina al 0,12%, en pacientes pediátricos según indicación médica.
- Controlar la realización de la terapia respiratoria, succión de secreciones con técnica correcta, así como la administración de nebulizaciones, según indicaciones médicas.
- Fijar y rotular todos los catéteres, conexiones, sondas y drenajes, para evitar lesiones en los sitios que están colocados y su cambio según protocolos.
- Controlar que los cables del ventilador, monitor, bombas, estén ordenados y conectados sin entrecruzarse.
- Mantener estricta vigilancia de la evolución del paciente durante todo el turno, y alertar al personal médico signos de deterioro o complicaciones

Durante los cambios de posición

- Evaluar la correcta fijación: tubo endotraqueal, catéter venoso central, línea arterial, drenajes, catéter urinario, sonda de alimentación, previo, durante y posterior a la movilización del paciente.
- Mantener al niño en posición fowler 45 grados.
- Realizar los cambios de posición de preferencia con 3 personas ya que dos de ellas deben realizar los cambios de posición correspondientes y otra debe estar a cargo de sostener las mangueras del ventilador y/o afirmar el tubo orotraqueal para evitar desplazamientos.
- Dejar al niño en posición cómoda y brindando medidas de confort.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Durante el destete y la extubación

- Evaluar criterios para destete.
- Vigilar criterios para la extubación.
- Iniciar titulación de sedoanalgesia.
- Monitorizar y registrar signos vitales (Temperatura, FC, SatO2, pulso, FR, TA)
- Tener listo el coche de paro.
- Informar a los familiares acerca del destete para que motiven y ayuden al niño en el proceso.
- Mantener al paciente en posición fowler 45º.
- Mantener al paciente en nada por vía oral al menos por dos horas antes y después de la extubación.
- Valorar permanentemente el estado de conciencia a través de la escala de Glasgow.
- Administrar medicación corticoide antes de la extubación prescrita por el médico.
- Vigilar constantemente el cambio de los modos y parámetros ventilatorios que realiza el médico, para el registro en la bitácora.
- Valorar signos de esfuerzo respiratorio (Escala de Wood-Downes-Ferres)
- Valorar gasometría arterial.
- Preparar material y equipo de protección personal (EPP) durante el manejo de secreciones.
- Vigilar el cumplimiento de las nebulizaciones prescritas y valorar el estado respiratorio del paciente.
- Controlar que se realice aspiración de secreciones subglóticas y laríngeas y estar atentos a las características de las mismas.
- Coordinar con el equipo médico (Terapista Respiratorio, Enfermera, Pediatra Intensivista) para el retiro del tubo endotraqueal.
- Controlar la realización de nebulizaciones luego de la retirada del tubo endotraqueal según prescripción médica (fisioterapista respiratoria).
- Auscultar y observar buena entrada de aire en ambos campos pulmonares.
- Vigilar la ventilación/oxigenación pos extubación.
- Continuar con monitorización y estar alerta en variaciones de frecuencia cardiaca, frecuencia respiratoria, SaO2, nivel de conciencia etc., y reportar novedades.
- Animar al paciente pediátrico para que respire y expectore.
- Observar si el niño retiene secreciones, presencia de estridor laríngeo, disminución de conciencia, signos de distress respiratorio y comunicar.

Posterior a extubación exitosa

Durante el fracaso del destete

- Monitorizar cada hora signos vitales, nivel de conciencia, FR, FC, TA, SaO2, temperatura y escala del dolor.
- Controlar el dolor (verbalización propia del paciente y/o signos clínicos de acuerdo con la edad).
- Brindar apoyo psicológico y educar al familiar sobre las actividades a realizarse en el niño.
- Realizar cambios de posición para movilizar secreciones, conjuntamente con fisioterapia respiratoria.
- Realizar actividades de alta para transferencia a hospitalización de pediatría. clínica después de 24 a 48 horas de extubación exitosa, según indicación médica
- Identificar los criterios de fracaso de la extubación, descrito previamente en esta ruta de enfermería.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

- Preparar material para Re intubación (ver actividades de enfermería previo a la ventilación).
- Administrar nuevamente medicación para sedación y relación del paciente.
- Conectar al ventilador mecánico y continuar con los cuidados del paciente intubado.

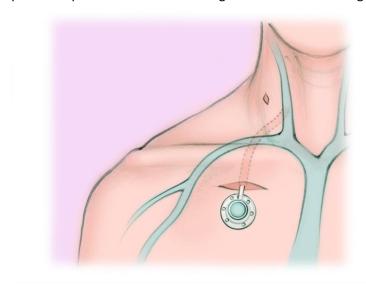
4. CATÉTER VENOSO CENTRAL

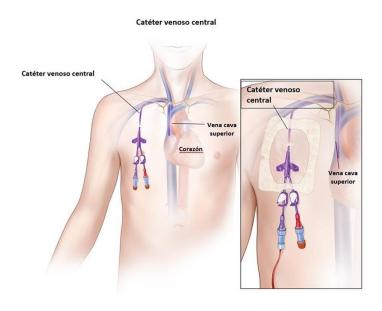
Una vía central (o catéter venoso central) es como una vía intravenosa (VI). Pero es mucho más larga que una vía intravenosa ordinaria y llega hasta una vena ubicada cerca del corazón o hasta dentro del corazón. Un paciente puede recibir medicamentos, líquidos, sangre o nutrición a través de una vía central. Las vías centrales también se pueden usar para extraer sangre.

Catéter venoso central

Catéter venoso central Vena cava superior Corazón Vena cava superior

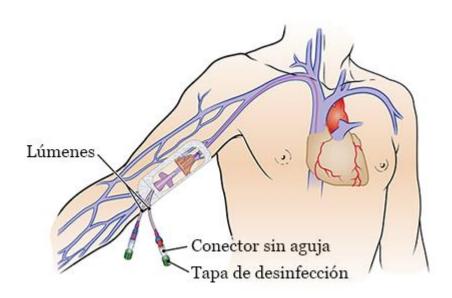
© 2015 Terese Winslow LLC U.S. Govt. has certain rights


REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS


TIPOS DE VÍAS CENTRALES

Las vías centrales que se usan más a menudo son:

• Los puertos implantados: es una sonda flexible que se coloca en una de las venas. Es posible que deba recibir medicamentos en una vena más grande que las de los brazos. Su puerto permite que el medicamento ingrese al torrente sanguíneo a través de una vena.

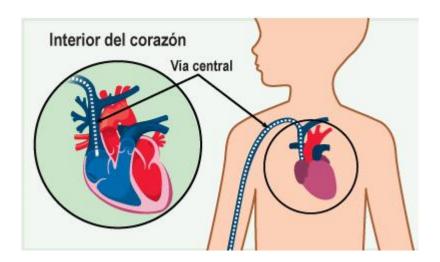

• las vías centrales tunelizadas (también conocidas como catéteres centrales tunelizados): Pero es mucho más larga que una vía intravenosa ordinaria y llega hasta una vena ubicada cerca del corazón o hasta dentro del corazón.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

• los catéteres centrales de inserción periférica (PICC, por sus siglas en inglés):es una sonda larga y delgada que se introduce en el cuerpo a través de una vena en la parte superior del brazo. El extremo del catéter termina en una vena grande cerca del corazón.

¿CUÁNDO SE USAN VÍAS CENTRALES EN VEZ DE VÍAS INTRAVENOSAS ORDINARIAS?

Los médicos pueden usar vías centrales en vez de vías intravenosas ordinarias porque:


- Se pueden dejar puestas durante más tiempo (hasta un año entero o incluso más).
- Facilitan la extracción de sangre.
- Los pacientes pueden recibir grandes cantidades de líquidos y de medicamentos (como la quimioterapia) que no se podrían administrar a través de una vía intravenosa ordinaria.

Los médicos pueden colocar vías centrales en personas que:

- tienen una grave infección y deben recibir antibióticos por vía intravenosa durante varias semanas seguidas
- padecen un cáncer y deben recibir quimioterapia y extraerse sangre a través de una vía intravenosa
- necesitan recibir nutrición por vía intravenosa
- van a necesitar recibir muchas transfusiones de sangre

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

¿LAS VÍAS CENTRALES IMPLICAN ASUMIR RIESGOS?

La mayoría de las veces, las líneas centrales no causan ningún problema. Si surgen problemas, estos se suelen deber a que la vía central se infecta y/o deja de funcionar. En contadas ocasiones, las vías centrales pueden causar coágulos de sangre. Los médicos revisan los riesgos con las familias antes de colocar una vía central.

GOTEOS INOTRÓPICOS

Son un grupo de medicamentos que aumentan la contracción cardíaca.

Se utilizan en situaciones de urgencia, cuando el paciente presenta cuadros de shock (un colapso circulatorio) o hipotensión (disminución de presión arterial). También se utilizan en el post-operatorio de una cirugía cardíaca.

Se administran por vena y actúan en las células cardíacas, incrementando la fuerza con la que se contrae el músculo. Además, estos medicamentos actúan sobre las paredes de las arterias y pueden modificar los valores de presión arterial.

Los efectos adversos más frecuentes de los inotrópicos son hipertensión arterial, arritmias, náuseas y vómitos.

Los inotrópicos más utilizados son:

 Dopamina: Se utiliza para incrementar la presión arterial y la frecuencia cardíaca en pacientes que se encuentran en shock (colapso circulatorio que frena la llegada de sangre a los tejidos y órganos).

La dopamina también es útil para aumentar la frecuencia cardíaca en casos de arritmia con pulsaciones lentas (bradiarritmias). La dopamina, además, incrementa la irrigación sanguínea de los riñones.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Se administra en forma inyectable, por vena.

Los efectos adversos posibles son arritmias, vómitos e hipertensión arterial.

Dobutamina: Actúa, principalmente, en el músculo cardíaco, incrementando la fuerza con la que se contrae.

Se administra por vena. Como efectos adversos, puede generar arritmias y alteraciones de la presión arterial.

Milrinona: Es un fármaco de la familia de las drogas inotrópicas que actúa sobre una enzima que se encuentra dentro de las células cardíacas (fosfodiesterasa).

Produce un incremento de la contracción del músculo cardíaco.

Se utiliza en situaciones de urgencia, administración por vena en forma de goteo continuo.

Como efectos adversos, puede provocar arritmias y alteraciones de la presión arterial.

Noradrenalina: También llamada "norepinefrina", la noradrenalina es un fármaco de la familia de drogas inotrópicas que estimula a los receptores de adrenalina.

Si bien incrementa la actividad cardíaca y la fuerza de contracción del corazón, su principal efecto es provocar una constricción de las arterias, con lo cual se eleva la presión arterial.

Se utiliza por vena en situaciones de emergencia.

Puede provocar hipertensión arterial y arritmias.

Levosimendán: Es un fármaco de la familia de las drogas inotrópicas que actúa dentro de las células cardíacas, estimulando el efecto del calcio. Como consecuencia, produce un incremento de la contracción del músculo cardíaco.

Se utiliza en situaciones de urgencia, administrándose por vena en forma de goteo continuo.

Como efectos adversos, puede provocar arritmias y alteraciones de la presión arterial.

6. **GOTEOS HIPERTÓNICOS**

Una solución hipertónica es aquella que tiene una mayor concentración de solutos en comparación con otra solución, que a menudo se refiere a los fluidos corporales intracelulares y extracelulares. 'Hiper' proviene del griego, lo que significa 'por encima de' y 'tonos' se refiere a la 'tensión'

Este principio es esencial para entender la osmorregulación, el proceso por el cual las células y los organismos mantienen el equilibrio de agua y solutos. En un entorno hipertónico, donde la concentración de solutos es mayor fuera de la célula, el agua tenderá a moverse fuera de la célula hacia el entorno con mayor concentración de solutos, causando que la célula se encoja o se deshidrate, un fenómeno conocido como crenación.

Desde una perspectiva clínica, las soluciones hipertónicas tienen numerosas aplicaciones, pero siempre deben utilizarse con precaución debido a sus potentes efectos osmóticos. Por ejemplo, una solución salina hipertónica, que contiene una mayor concentración de sal que los fluidos normales del cuerpo, se utiliza en la medicina de emergencia y cuidados críticos para tratar el edema cerebral, una condición peligrosa en la que el cerebro se hincha debido a la inflamación. Esta solución puede ayudar a reducir la presión intracraneal al extraer el exceso de agua del cerebro.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Además, las soluciones hipertónicas también se utilizan para tratar la hiponatremia, una condición en la que los niveles de sodio en la sangre son anormalmente bajos. Al administrar una solución hipertónica, se puede aumentar la concentración de sodio en la sangre, lo que ayuda a restablecer el equilibrio de los electrolitos. Sin embargo, es importante tener en cuenta que la corrección de la hiponatremia con soluciones hipertónicas debe hacerse con cautela para evitar la desmielinización osmótica, una complicación grave causada por un aumento demasiado rápido de los niveles de sodio en la sangre.

En otros ámbitos de la medicina, como la oftalmología, las soluciones hipertónicas pueden utilizarse para tratar ciertos tipos de edema corneal, ayudando a extraer el exceso de agua de la córnea para mejorar la visión. En la fisioterapia respiratoria, las soluciones hipertónicas se utilizan en la terapia de inhalación para ayudar a humidificar las vías respiratorias y facilitar la eliminación de las secreciones mucosas en afecciones como la fibrosis quística.

En el ámbito de la nutrición parenteral, las soluciones hipertónicas son a menudo necesarias para proporcionar una cantidad adecuada de nutrientes a los pacientes que no pueden comer o absorber nutrientes a través del tracto gastrointestinal. Estas soluciones contienen una alta concentración de nutrientes y suelen administrarse a través de una vena central debido a su alta osmolaridad.

En términos de investigación científica, las soluciones hipertónicas se utilizan en diversos procedimientos experimentales. Por ejemplo, la crioconservación de células y tejidos a menudo implica el uso de soluciones hipertónicas para ayudar a proteger las células durante el proceso de congelación.

No obstante, a pesar de su utilidad, el uso de soluciones hipertónicas requiere un cuidado meticuloso. Es esencial controlar de cerca a los pacientes que reciben estas soluciones para evitar las complicaciones asociadas con los cambios osmóticos rápidos, como el choque osmótico y el desequilibrio de los electrolitos.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

7. NUTRICIÓN PARENTERAL TOTAL

Suministra todos los requerimientos nutricionales diarios. La NPT puede usarse en el hospital o en el hogar. Como las soluciones de NPT están concentradas y pueden provocar una trombosis de las venas periféricas, en general se requiere un catéter central.

La nutrición parenteral no debe usarse rutinariamente en pacientes con un tubo digestivo intacto. Comparada con la nutrición enteral, tiene las siguientes desventajas:

- Causa más complicaciones.
- No preserva tan bien la estructura y la función del tubo digestivo.
- Es más caro.

INDICACIONES

La NPT puede ser la única opción factible para pacientes que no tienen un tubo digestivo funcional o que tienen trastornos que requieren un reposo total del intestino, como los siguientes:

- Algunos de los estadios de la colitis ulcerosa
- Obstrucción intestinal
- Ciertos trastornos pediátricos (p. ej., anomalías gastrointestinales congénitas, diarrea prolongada no importa la causa)
- Síndrome del intestino corto debido a cirugía

CONTENIDO NUTRICIONAL

La nutrición parenteral total requiere agua (30 a 40 mL/kg/día), energía (30 a 35 kcal/kg/día, según el gasto energético; hasta 45 kcal/kg/día en pacientes en estado crítico), aminoácidos (1,0 a 2,0 g/kg/día, según el grado de catabolismo), ácidos grasos esenciales, vitaminas y minerales (véase tabla Requerimientos básicos diarios de los adultos para la nutrición parenteral total).

Los niños que necesitan NPT pueden tener distintos requerimientos de líquidos y requieren más energía (hasta 120 kcal/kg/día) y aminoácidos (hasta 2,5 o 3,5 g/kg/día).

Las soluciones básicas de NPT son preparadas usando la técnica estéril, en general en envases de 1 litro de acuerdo con fórmulas estandarizadas. Normalmente se necesitan 2 L/día de la solución estándar. Las soluciones pueden modificarse según los resultados de laboratorio, por trastornos subyacentes, hipermetabolismo u otros factores.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

La mayor parte de las calorías se suministran como hidratos de carbono. Típicamente, la dextrosa suministra 4 o 5 mg/kg/min. Las soluciones estándares contienen hasta un 25% de dextrosa, pero la cantidad y la concentración depende de otros factores, como las necesidades metabólicas y la proporción de necesidades calóricas suministradas por los lípidos.

Hay emulsiones comercialmente disponibles que agregan ácidos grasos y triglicéridos; en general el 20 a 30% de las calorías totales se suministran como lípidos. Los lípidos pueden hacer que los pacientes obesos movilicen grasas endógenas, incrementando la sensibilidad a la insulina.

SOLUCIONES DE NPT

Hay muchas soluciones de NPT que se usan con frecuencia. Pueden agregarse electrolitos para reunir las necesidades del paciente.

Las soluciones de NPT pueden variar según el trastorno y la edad del paciente, como se detalla a continuación:

- Para la insuficiencia renal que no es tratada con diálisis, o para la insuficiencia hepática: reducción del contenido de proteínas y alto porcentaje de aminoácidos esenciales
- Para la insuficiencia cardíaca o renal: limitar el volumen (líquidos)
- Para la insuficiencia respiratoria: una emulsión de lípidos que proporcione la mayor parte de las calorías no proteicas para minimizar la producción de dióxido de carbono por el metabolismo de los carbohidratos
- Para neonatos: menores concentraciones de dextrosa (17 a 18%)

Comienzo de la administración de NPT

Como el catéter venoso central debe permanecer en su sitio mucho tiempo, debe usarse una estricta técnica estéril durante su colocación y el mantenimiento de la línea NPT. La vía de NPT no debe usarse para ningún otro propósito. La tubuladura externa debe cambiarse cada 24 h con la primera bolsa del día. Los filtros de la línea no han demostrado disminuir las complicaciones. Las curaciones deben permanecer estériles y en general se cambian cada 48 h usando una estricta técnica estéril.

Si se usa la NPT fuera del hospital, los pacientes deben conocer los síntomas de infección, y debe controlarse con enfermeras en el domicilio.La solución se comienza lentamente en un 50% de los requerimientos calculados, usando dextrosa al 5% para alcanzar el equilibrio líquido necesario. La energía y el nitrógeno debe administrarse simultáneamente. La cantidad de insulina regular administrada (administrada directamente en la solución de NPT) depende de los niveles de glucosa en plasma; si los niveles son normales y la solución final contiene 25% de dextrosa, la dosis usual de comienzo es 5 a 10 unidades de insulina regular/L de líquidos de NPT.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Control

El progreso de los pacientes con una sonda de NPT debe seguirse en una tabla. Si es posible, un equipo de nutrición interdisciplinaria nutrition team debe controlar al paciente. Se debe obtener un hemograma completo. El peso, los electrolitos y el nitrógeno ureico en sangre deben controlarse con frecuencia (p. ej., todos los días en pacientes hospitalizados). La glucosa en plasma debe controlarse cada 6 h hasta que los niveles sean estables. La ingesta de líquidos y la excreción deben controlarse continuamente. Cuando el paciente se encuentra estable, las pruebas de sangre pueden realizarse con menos asiduidad.

Complicaciones

Entre el 5 y el 10% de los pacientes con sonda de NPT presentan complicaciones relacionadas con el acceso venoso central.

Las tasas de sepsis relacionada con el catéter han disminuido desde la introducción de pautas que enfatizan las técnicas estériles para la inserción del catéter y el cuidado de la piel alrededor del sitio de inserción. El uso cada vez mayor de equipos dedicados de médicos y enfermeras que se especializan en diversos procedimientos, incluida la inserción de catéter, también ha explicado la disminución de las tasas de infección relacionadas con el catéter.

Las anomalías de la glucosa (hiperglucemia o hipoglucemia) y la disfunción hepática aparecen en > 90% de los pacientes.

Anomalías de la glucosa: son comunes. La hiperglucemia puede evitarse con la monitorización de los niveles de glucemia, el ajuste de la dosis de insulina en la solución de NPT y con la administración de insulina subcutánea si es necesario. La hipoglucemia puede precipitarse interrumpiendo continuamente las infusiones concentradas constantes de dextrosa. El tratamiento depende del grado de hipoglucemia. La hipoglucemia de corto plazo puede revertirse con dextrosa al 50% IV; las hipoglucemias más prolongadas pueden requerir una infusión de dextrosa al 5 o 10% por 24 h antes de reasumir la NPT por el catéter venoso central.

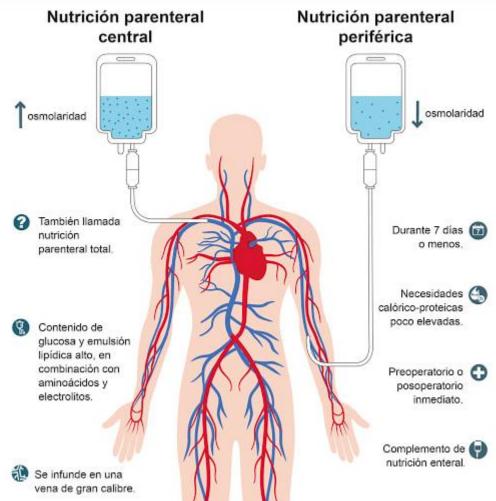
Complicaciones hepáticas: incluye disfunción hepática, hepatomegalia dolorosa e hiperamoniemia. Pueden aparecer a cualquier edad, pero son más comunes entre los lactantes, parcialmente en los prematuros (cuyo hígado es inmaduro).

- La disfunción hepática puede ser transitoria, y evidenciarse mediante un aumento en las transaminasas, la bilirrubina y la fosfatasa alcalina; en general aparece cuando se inicia la NPT. Las elevaciones tardías o persistentes pueden producirse por un exceso de aminoácidos. La patogenia es desconocida, pero la colestasis y la inflamación pueden contribuir. Ocasionalmente se produce una fibrosis progresiva. La reducción de la administración de proteínas puede ayudar.
- La hepatomegalia dolorosa sugiere acumulación de grasas; la administración de hidratos de carbono debe reducirse.
- La hiperamoniemia puede aparecer en la lactancia, que provoca letargia, calambres y convulsiones generalizadas. El suplemento de arginina con 0,5 a 1,0 mmol/kg/día puede corregirla.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Si un lactante desarrolla una complicación hepática, puede ser necesario reducir la administración de aminoácidos a 1,0 g/kg/día.

Anomalías de los electrolitos y minerales séricos: deben corregirse mediante modificaciones de las soluciones o, si se requiere una corrección urgente, a través de infusiones en una vena periférica. Las deficiencias de vitaminas y minerales son raras cuando las soluciones se administran correctamente. Los niveles elevados de nitrógeno ureico pueden reflejar una deshidratación, que puede corregirse administrando agua con dextrosa al 5% por una vena periférica.


Sobrecarga de volumen: (sugerida por un aumento de peso > 1 kg/día) puede aparecer cuando los pacientes tienen requerimientos elevados de energía y por lo tanto necesitan grandes volúmenes de líquidos.

Enfermedad ósea metabólica: o desmineralización ósea (osteoporosis o osteomalacia); aparece en algunos pacientes que reciben NPT por > 3 meses. El mecanismo es desconocido. La enfermedad avanzada puede causar dolor periarticular en los miembros inferiores y dolor de espalda. Las reacciones adversas a las emulsiones lipídicas (p. ej., disnea, reacciones alérgicas cutáneas, náuseas, cefaleas, dolor de espalda, sudoración, mareos) son raras pero pueden aparecer tempranamente, en especial si se dan lípidos a > 1,0 kcal/kg/h. Puede haber una hiperlipidemias temporal, en especial en pacientes con insuficiencia renal o hepática; usualmente no se requiere tratamiento. Las reacciones adversas tardías a las emulsiones lipídicas incluyen hepatomegalia, elevación leve de las enzimas, esplenomegalia, trombocitopenia, leucopenia, y, especialmente en los lactantes prematuros con distrés respiratorio, anomalías en la función pulmonar. Disminuir o interrumpir temporal o permanentemente la emulsión de lípidos puede evitar o minimizar estas reacciones adversas.

Complicaciones vesiculares: incluyen colelitiasis, esfacelo vesicular y colecistitis. Estas complicaciones pueden ser causadas o empeoradas por la estasis vesicular prolongada. Estimular la contracción proporcionando 20 a 30% de las calorías como grasas o detener la infusión de glucosa varias veces al día resulta útil. Comenzar o aumentar la ingesta oral o enteral también ayuda. El tratamiento con metronidazol, ácido ursodeoxicólico, fenobarbital o colecistocinina ayuda a algunos pacientes con colestasis.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

8. MONITORIZACIÓN CONTINUA

El parámetro utilizado para conocer si el nivel de glucemia está controlado es la hemoglobina glucosilada (HbA1c), es fundamental para valorar el control metabólico de una persona con diabetes. Un alto porcentaje de hemoglobina glicosilada indica que la glucemia ha sido alta en los últimos meses. El valor de HbA1c se trata de un valor medio, se puede tener un buen valor medio de glucemia pero que ocurran grandes oscilaciones en el nivel de glucosa en sangre. Se ha demostrado que las constantes variaciones en la glucemia son perjudiciales y aumentan el riesgo de complicaciones.

Hasta la fecha se utiliza la determinación de glucosa en la sangre capilar, pinchando la yema de los dedos, para conocer el nivel de glucosa en sangre. Para conocer cómo varía la glucosa a lo largo de las 24 horas del día se precisan 3 ó 4 determinaciones diarias.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

¿CÓMO FUNCIONAN LOS SISTEMAS DE MONITORIZACIÓN CONTINUA DE GLUCOSA?

Se trata de dispositivos compuestos por un sensor que tiene un filamento flexible, que se inserta bajo la piel y un transmisor, que envía la señal al receptor, que muestra el valor en la pantalla de un receptor o de un teléfono móvil compatible. El móvil permite compartir los datos con personas del entorno familiar, cuidadores y otros profesionales.

La principal diferencia con los medidores de glucosa capilar es que miden la glucosa en el líquido intersticial, es decir, en el espacio entre las células. Este valor de glucosa es distinto al de glucosa en sangre. En definitiva: ambos sistemas miden cosas distintas pero la concentración de glucosa intersticial es un reflejo de la glucemia en sangre. Los sistemas de monitorización continua de glucosa obtienen medidas cada 5 minutos e indican la tendencia, con un gráfico se visualiza la velocidad del cambio de la glucosa.

No todos los sistemas de monitorización continua de glucosa son iguales

El especialista orientará sobre el modelo más adecuado para cada paciente:

- Sistemas de monitorización continua en tiempo real: necesitan ser calibrados dos o tres veces al día mediante punción capilar. Hay que calibrar cuando se está en situación estable, es decir, cuando no haya subidas ni bajadas bruscas de glucosa, como ocurre después de las comidas o del ejercicio. Estos dispositivos sí que cuentan con alarmas para hiper e hipoglucemias, pueden acoplarse a una bomba de insulina. Tienen una duración de 6 días a dos semanas.
- Monitorización Flash de glucosa: no precisa calibración, dura dos semanas. El lector debe acercarse al sensor, colocado en el brazo y se muestra la glucemia en ese momento y un gráfico de la tendencia de las 8 horas previas.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Próximamente se comercializará en España un sensor implantable, de mayor duración.

¿CON QUÉ VENTAJAS CUENTAN ESTOS SISTEMAS?

- Evitan hipoglucemias, gracias a las alarmas asociadas a niveles bajos de glucosa y/o tendencias de bajada rápidas.
- Mejoran el control de la HbA1c reduciendo así las complicaciones. Permite estimar el valor de la HbA1c
- Identificar patrones de glucosa alta o baja e identificar sus posibles causas.
- Proporcionan información de los valores de glucosa durante el sueño.
- Monitorizar a distancia los niveles de glucosa, utilidad especialmente interesante en el control de la diabetes en niños.
- Estudiar en detalle las fluctuaciones de los niveles de glucosa para adaptar el tratamiento a cada paciente.
- Proporciona seguridad al paciente y mejora su calidad de vida.

Sin embargo, no pueden ignorarse algunos inconvenientes, los más remarcables son:

- Coste elevado. En general en España la monitorización continua de glucosa no está costeada por el servicio público de salud.
- Puede producir molestias locales.
- Duración limitada.
- Está sujeta a errores relacionados con la zona de inserción y calibración.

9. HISTORIA CLÍNICA DE URGENCIAS Y UCI

En estas líneas pretendemos exponer unas recomendaciones y consejos, para la confección del informe clínico de urgencias, del que, la historia clínica, constituye una parte fundamental. A lo largo de la exposición intentaremos alcanzar los siguientes objetivos:

- 1. Conocer las funciones del informe clínico de Urgencias.
- 2. Conocer la importancia médica y legal del informe clínico.
- 3. Conocer la obligatoriedad de su realización y los contenidos mínimos del mismo.
- 4. Conocer la estructura que debe tener el informe clínico.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

FUNCIONES DEL INFORME CLÍNICO DE URGENCIAS

Dentro de las funciones que tiene el informe clínico señalamos las siguientes:

- 1)Puramente asistencial.
- 2)Como garantía de calidad asistencial, pudiendo realizar registros de actividad y valorar sus resultados.
- 3)Como fuente para realizar investigación clínica y epidemiológica.
- 4) Como fuente de información para los servicios jurídicos.
- 5) Como fuente de datos para poder realizar una correcta planificación y gestión de los recursos asistenciales

Podemos afirmar que el informe clínico es un documento personal, médico y legal y de gran importancia siendo a veces el único que refleja y certifica la relación, las actuaciones, exploraciones y decisiones en relación con el enfermo en Urgencias.

Es sin duda el documento más importante que vamos a manejar en los servicios de Urgencia, es fundamental en sus vertientes asistenciales y administrativas; además, constituye el registro completo de la atención prestada al paciente durante su proceso, de lo que se deriva su trascendencia legal. No debemos olvidar que el informe clínico es un documento público en el que certificamos con nuestra firma la veracidad de lo que contiene, al que pueden tener acceso terceras personas, y que podemos ser incriminados si se demuestra que no es cierto lo que allí se expone.

Cuando muchos pacientes acuden demandando asistencia urgente con patología de muy diferente gravedad debemos disponer de una herramienta objetiva para "ordenarlos" en función de la gravedad de su patología a la hora de atenderlos. De este concepto nace el TRIAJE.

El triaje se hace por la necesidad de establecer unas prioridades asistenciales privilegiando la posibilidad de supervivencia, de acuerdo con las necesidades terapéuticas y los recursos disponibles. Debe realizarse por personal con experiencia y juicio clínico, con capacidad de tomar decisiones y gestionar situaciones difíciles.

Dentro de los objetivos del triaje tenemos: 4 Identificar rápidamente a los pacientes graves con el fin de priorizar su asistencia.

- Determinar el área de tratamiento más adecuada.
- Disminuir la congestión de las áreas de tratamiento de los servicios de urgencia.
- Permitir la evaluación continua de los pacientes mediante reevaluaciones periódicas.
- Crear un lenguaje común para todos los profesionales implicados en urgencia.

10. MANEJO DE PACIENTE INCONSCIENTE

Sucede cuando una persona es incapaz de responder a otras personas y actividades. Los médicos a menudo se refieren a esto como estar en coma o estar en un estado comatoso.

Hay otros cambios que pueden ocurrir en el nivel de conciencia de la persona sin quedar inconsciente. Estos son llamados estados alterados de la mente o estado mental cambiado. Estos incluyen confusión, desorientación o estupor repentinos.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

La pérdida del conocimiento y cualquier otro cambio repentino del estado mental deben tratarse como una emergencia.

CAUSAS

La pérdida del conocimiento puede ser causada por casi cualquier enfermedad o lesión importante. También puede ser causada por el abuso de sustancias (drogas) y alcohol. Atragantarse con un objeto puede resultar en la pérdida del conocimiento de igual manera.

La pérdida del conocimiento breve (o desmayo) suele ser causada por deshidratación, glucemia baja o presión arterial baja temporal. También puede ser ocasionada por problemas serios en el sistema nervioso o el corazón. El médico determinará si la persona afectada necesita practicarse exámenes para diagnosticar su desmayo.

Otras causas de los desmayos abarcan hacer un esfuerzo intenso durante la defecación o micción, toser muy fuerte, respirar muy rápido (hiperventilación) o síncope vasovagal.

SÍNTOMAS

La persona no reacciona (no responde a la actividad, al contacto, al sonido o a otra estimulación).

Se pueden presentar los siguientes síntomas después de que una persona haya quedado inconsciente.

- Amnesia (no recordar) con respecto a hechos sucedidos antes, durante o incluso después del período de pérdida del conocimiento
- Confusión
- Somnolencia
- Dolor de cabeza
- Incapacidad para hablar o mover partes del cuerpo (síntomas de accidente cerebrovascular)
- Mareo
- Pérdida del control de esfínteres (incontinencia)
- Latidos cardíacos (palpitaciones) rápidos
- Latidos cardíacos lentos
- Estupor (debilidad y confusión severas)

Si la persona está inconsciente por ahogamiento, los síntomas pueden incluir:

- Incapacidad para hablar
- Dificultad para respirar
- · Respiración ruidosa o sonidos agudos al inhalar
- Tos débil y no efectiva
- Color de piel azulado

Estar dormido no es lo mismo que estar inconsciente. Una persona dormida responde a ruidos altos o ser agitado gentilmente. Una persona inconsciente no responde a estos estímulos.

REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

PRIMEROS AUXILIOS

Si una persona está despierta pero menos alerta de lo usual, hágale una serie de preguntas sencillas, como:

- ¿Cuál es su nombre?
- ¿Qué día es?
- ¿Cuántos años tiene?

Dar respuestas incorrectas o no responder a las preguntas sugiere un cambio en el estado mental. **No se debe**

- NO le suministre comida ni bebidas a una persona inconsciente.
- NO deje a la persona sola.
- NO coloque una almohada debajo de la cabeza de una persona inconsciente.
- NO le dé palmadas ni eche agua en la cara a una persona inconsciente para tratar de revivirla.

11. GOTEOS HIPNÓTICOS

Hipnóticos orales

Los hipnóticos por vía oral, llamados de manera informal pastillas para dormir, se usan en el tratamiento del insomnio. Es aconsejable utilizarlos por recomendación y prescripción médica. El médico seleccionará el hipnótico más efectivo y seguro, y lo prescribirá a la dosis efectiva más baja y por el menor número de noches que sea necesario. Estos fármacos se deben emplear estrictamente durante el tiempo que el médico indique para evitar fenómenos de dependencia y tolerancia. El objetivo inicial de un médico que trata a un paciente con insomnio es determinar qué factores contribuyen a la alteración del sueño, y a partir de aquí, optar por una estrategia de tratamiento.

En este sentido, y para evitar los posibles efectos secundarios de estos fármacos, inicialmente el médico puede recomendar realizar cambios en el entorno antes de prescribirlos. Estos cambios del entorno pueden incluir: buenos hábitos de sueño, patrones de preparación para el sueño, medidas

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

de relajación, ejercicios, evitar la cafeína, el alcohol y otras sustancias estimulantes, o incluso intervenciones conductuales como la terapia cognitiva-conductual para el insomnio.

Hipnóticos intravenosos e inhalatorios

Se utilizan para la realización del acto anestésico y durante la sedación en ambiente hospitalario. Son los fármacos principales en la inducción y el mantenimiento de la anestesia, junto con los morfinanos u opiáceos y los relajantes musculares. Los hipnóticos utilizados en Anestesia son:

- Barbitúricos, el Pentothal es el más utilizado.
- Propofol
- Etomidato
- Ketamina. Es poco utilizado debido a su poder alucinógeno, con posibilidad de producir estados psicóticos postanestésicos, aunque sigue siendo muy útil en medicina de emergencias y en pacientes con shock.
- Benzodiazepinas. La más utilizada en Anestesia es el Midazolam por su vida media corta y su perfil farmacocinético.

Psicotrópicos

Se llaman psicotrópicos a las sustancias que actuando sobre el sistema nervioso producen cambios transitorios en la percepción, el estado de ánimo, la conciencia o el comportamiento. Entre los hipnóticos psicotrópicos encontramos:

- -Benzodiazepinas.
- -Antihistamínicos doxilamina, prometazina, zaleplon, difenhidramina.
- -Otros como zolpidem, zopiclona, eszopiclona, hidrato de cloral y clometiazol.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

12. ACTIVIDADES GENERALES DE LA UCI

La Unidad de Cuidados Intensivos se conoce como el área en el que se procede a brindar atención a los pacientes que tienen alguna condición determinada de salud que está poniendo su vida en riesgo, por lo que requiere de una monitorización y control constante. Para ello, es necesario contar con una serie de equipos tecnológicos, llevar a cabo procesos invasivos y asistencia dada por un equipo de profesionales de la salud especializados.

Aunque estos lugares pueden ser de diversas formas, planificación y tener diferentes protocolos, todas cuentan con características comunes:

- Equipos con gran tecnología.
- o Personal profesional sanitario con cualificación y especialización.
- o Son lugares que se destinan al cuidado del paciente que se encuentra en un estado crítico.
- En la UCI se realizan intervenciones específicas para el manejo de situaciones fisiológicas delicadas que ponen en peligro la vida del paciente.
- o Dos de las intervenciones que se realizan son pilares de la unidad, siendo éstas: monitorizar el estado de la persona y los cuidados críticos.
- Para este servicio, son los profesionales de la salud de enfermería el principal método de asistencia de los pacientes.

CUIDADOS DIARIOS DE UN PACIENTE CRÍTICO

Para seguir aprendiendo sobre cuáles son los cuidados del paciente crítico, vamos a nombrar los cuidados generales del paciente que se llevan a cabo en todos los turnos:

- Movilización del paciente de una manera segura cuando se encuentre indicado.
- Verificar la nutrición del paciente.
- Participar para el relevo de enfermería y saber así la evolución del paciente en las 24 últimas horas.
- o Prestar especial atención al último turno.
- o Higiene cuando es requerido por diarrea, diaforesis, vómitos, etc.
- Garantizar la adecuada higiene del paciente, sobre todo antes y después de haber comido.
- Hacer uso del tratamiento del médico que se ha prescrito y colaborar junto al médico intensivista para los procesos sobre el diagnóstico y terapias.
- Llevar a cabo una actuación rápida si hay una amenaza vital.
- Aplicación de los cuidados planificados determinados para cada paciente.
- Dar una correcta respuesta y veloz a las demandas de la familia y del paciente.

¿CUÁL ES LA IMPORTANCIA DE LOS CUIDADOS DEL PACIENTE CRÍTICO?

Para acabar de explicar la pregunta de cuáles son los cuidados del paciente crítico, debemos decir que la importancia de esta terapia intensiva es central si tenemos en cuenta que estamos hablando de que es el espacio en el que los pacientes o enfermos con más peligro

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

en cuanto a su salud, reciben cuidados de enfermería especializada en Medicina Intensiva y otros muchos profesionales.

13. PACIENTE CONVULSIVO.

Una convulsión es una alteración repentina e incontrolada de la actividad eléctrica en el cerebro. Puede provocar cambios en el comportamiento, los movimientos, los sentimientos y los niveles de conciencia. Tener dos o más convulsiones con al menos 24 horas de diferencia y con causa desconocida se considera epilepsia.

Hay muchos tipos de convulsiones, y sus síntomas y gravedad varían. Los tipos de convulsiones son diferentes según la región del cerebro en la que comienzan y hasta dónde se diseminan. La mayoría de las convulsiones duran de 30 segundos a 2 minutos. Una convulsión que dura más de 5 minutos es una emergencia médica.

Las convulsiones pueden ocurrir después de un accidente cerebrovascular o de una lesión en la cabeza. Las infecciones como la meningitis u otras enfermedades también pueden ocasionarlas. Sin embargo, muchas veces se desconoce la causa. La mayoría de los trastornos convulsivos se pueden controlar con medicamentos. Sin embargo, controlar las convulsiones puede afectar a tu vida diaria. Síntomas

Los síntomas varían según el tipo de convulsión y pueden ser de leves a graves. Algunos de los síntomas de las convulsiones pueden ser los siguientes:

- Confusión temporal.
- Evento de ausencia.
- Movimientos espasmódicos e incontrolables de los brazos y piernas.
- Desmayo o pérdida de la consciencia.
- Cambios cognitivos o emocionales, que pueden incluir miedo, ansiedad o la sensación de que ya has vivido este momento, que se conoce como déjà vu.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

Los proveedores de atención médica suelen clasificar las convulsiones como focales o generalizadas. Las convulsiones se clasifican según cómo y dónde comenzó la actividad cerebral que las causa. Si los proveedores de atención médica no saben cómo comenzaron las convulsiones, las pueden clasificar como de inicio desconocido.

CONVULSIONES FOCALES

Las convulsiones focales son el resultado de la actividad eléctrica en un área del cerebro. Este tipo de convulsión puede presentarse con o sin pérdida del conocimiento:

- Convulsiones focales con pérdida del conocimiento. Estas convulsiones implican un cambio o la pérdida de la conciencia o del conocimiento que se asemeja a la sensación de estar en un sueño. Las personas que tienen estos tipos de convulsiones pueden dar la impresión de estar despiertas, pero miran fijamente al espacio y no responden a su entorno. Quizás hagan movimientos repetitivos, como frotarse las manos, mover la boca, repetir determinadas palabras o caminar en círculos. Es posible que no recuerden la convulsión o que ni siguiera sepan que ha ocurrido.
- Convulsiones focales sin pérdida del conocimiento. Estas convulsiones pueden alterar las emociones. También pueden cambiar la manera de ver, oler, sentir, saborear o escuchar. Pero las convulsiones no causan pérdida del conocimiento. Durante este tipo de convulsiones, las personas pueden sentirse repentinamente enojadas, alegres o tristes. Algunas personas tienen náuseas o sensaciones poco habituales que son difíciles de describir. Estas convulsiones pueden derivar en problemas para hablar y movimientos espasmódicos involuntarios de una parte del cuerpo, como un brazo o una pierna. También pueden causar síntomas sensoriales repentinos, como hormigueo, mareos y visión con destellos de luz.

Los síntomas de las convulsiones focales pueden confundirse con otros trastornos del cerebro y del sistema nervioso. Como la migraña, la narcolepsia o las enfermedades mentales. Convulsiones generalizadas

Las convulsiones que aparentemente afectan a todas las áreas del cerebro desde el momento en que comienzan se denominan convulsiones generalizadas. Entre los diferentes tipos de convulsiones generalizadas se encuentran las siguientes:

- Crisis de ausencia. Las crisis de ausencia, que anteriormente se conocían como epilepsias menores, a menudo ocurren en niños. Por lo general, hacen que una persona mire fijamente el espacio o haga movimientos corporales sutiles, como parpadeos o chasquidos de labios. A menudo duran de 5 a 10 segundos. Estas convulsiones pueden suceder hasta cientos de veces al día. Pueden ocurrir en grupo y causar una pérdida breve del conocimiento.
- Convulsiones tónicas. Las convulsiones tónicas causan rigidez muscular.
 Generalmente, afectan a los músculos de la espalda, brazos y piernas. Las personas que presentan estas convulsiones pueden tener pérdida del conocimiento y caídas.
- Convulsiones atónicas. Las convulsiones atónicas, también conocidas como convulsiones de caída, causan la pérdida del control muscular. Las personas que tienen este tipo de convulsión pueden caer repentinamente o bajar la cabeza.

ELABORADO: DANIELA TOQUICA DIRECTORA ADMINISTRATIVA REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

- Convulsiones clónicas. Las convulsiones clónicas se asocian con movimientos musculares repetitivos y espasmódicos. Generalmente afectan el cuello, la cara y los brazos de ambos lados del cuerpo.
- Convulsiones mioclónicas. Las convulsiones mioclónicas generalmente aparecen como movimientos espasmódicos breves repentinos o sacudidas de brazos y piernas. Generalmente no hay pérdida del conocimiento.
- Convulsiones tónico-clónicas. Las convulsiones tónico-clónicas, que anteriormente se conocían como convulsiones gran mal, son el tipo más grave de convulsiones epilépticas. Pueden causar pérdida repentina del conocimiento, rigidez y sacudidas del cuerpo. A veces hacen que las personas pierdan el control de la vejiga o se muerdan la lengua. Pueden durar varios minutos. Las convulsiones tónico-clónicas también pueden comenzar como convulsiones focales que luego se diseminan para afectar la mayor parte o la totalidad del cerebro.

CAUSAS

Las células nerviosas del cerebro, conocidas como neuronas, crean, envían y reciben impulsos eléctricos. Esto permite la comunicación entre células. Cualquier cosa que altere las vías de comunicación puede llevar a una convulsión. Los cambios genéticos pueden causar algunos tipos de trastornos convulsivos.

La causa más frecuente de las convulsiones es la epilepsia. Sin embargo, no todas las personas que tienen una convulsión tienen epilepsia. A veces, las causas o desencadenantes de las convulsiones pueden ser las siguientes:

- Fiebre alta. En este caso, las convulsiones se llaman convulsiones febriles.
- Infección del cerebro. Algunos ejemplos pueden ser la meningitis o la encefalitis.
- Enfermedad general grave, entre ellas una infección grave por la COVID-19.
- Falta de sueño.
- Nivel bajo de sodio en la sangre. Esto puede ocurrir con medicamentos que te hacen orinar.
- Determinados medicamentos para tratar el dolor, la depresión o para ayudar a las personas a dejar de fumar. Estos pueden hacer que las convulsiones se den con mayor facilidad.
- Una lesión cerebral nueva y en curso, como un traumatismo craneal. Puede provocar sangrado en un área del cerebro o un nuevo accidente cerebrovascular.
- El consumo de fármacos o de drogas ilícitas que puedan estar a la venta en la calle, como anfetaminas o cocaína.
- Mal uso del alcohol, incluso durante momentos de abstinencia o de embriaguez extrema.

REVISIÓN NUMERO 1: LIC. JOHANA SUREZ REVISIÓN FINAL: DIRECTOR DR. JHONNY LLANOS

COMPLICACIONES

En ocasiones, tener una convulsión puede derivar en complicaciones que son peligrosas para ti o para otras personas. Puedes estar en riesgo de lo siguiente:

- Caídas. Si te caes durante una convulsión, puedes lastimarte la cabeza o romperte un hueso.
- Ahogamiento. Si tienes una convulsión mientras nadas o te bañas, estás en riesgo de ahogamiento accidental.
- Accidentes automovilísticos. Una convulsión que lleva a la pérdida de la conciencia o a la incapacidad de controlar un vehículo mientras se está consciente puede ser peligrosa.
- Complicaciones en el embarazo. Las convulsiones durante el embarazo representan un peligro para las mujeres embarazadas y sus bebés, y ciertos medicamentos anticonvulsivos aumentan el riesgo de anomalías congénitas. Si tienes epilepsia y planeas quedar embarazada, trabaja con el proveedor de atención médica, quien puede modificar los medicamentos y vigilar el embarazo según sea necesario.
- Problemas de salud emocional. Las personas con convulsiones son más propensas a presentar depresión, ansiedad u otros problemas de salud emocional. Lidiar con la afección y con los efectos secundarios de los medicamentos anticonvulsivos puede ocasionar estos problemas.

